Core: This document describes Aspiron’s foundational architecture and will not change.
Core Concepts
Aspiron is built on a set of interconnected concepts that work together to support effective learning.
Platform Architecture
┌─────────────────────────────────────────────────────────────────┐
│ ASPIRON PLATFORM │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ CONTEXT │ │ LEARNING │ │ ASSESSMENT │ │
│ │ LAYER │───▶│ STRUCTURE │───▶│ SYSTEM │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │ │ │ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ NOTES SYSTEM │ │
│ │ • Teacher Notes • Student Notes • External Refs │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │ │ │ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ AI FEATURES │ │
│ │ • Context-Aware Chat • Recall Check • Analysis │ │
│ └─────────────────────────────────────────────────────────┘ │
│ │ │ │ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ COMMUNITY │ │ SAFETY │ │ PROGRESS │ │
│ │ FORUM │ │ & INTEGRITY│ │ TRACKING │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────┘ How Concepts Connect
Context Layer (Foundation)
Everything starts with context. Students select:
- Exam - PGT, JEE, or NEET
- Subject - Their primary study subject
- Target Year - When they’re taking the exam
- Language - Content language preference
This context persists across the entire platform.
Learning Structure
Content is organized as:
- Subjects → Chapters → Topics
- Each piece linked to context
- Progress tracked at each level
Assessment System
Students demonstrate learning through:
- Practice Quizzes - Topic-level feedback
- Tests - Chapter/section validation
- Mock Exams - Full simulation
Notes System
Two note types, one unified system:
- Teacher Notes - Official, linked to content
- Student Notes - Personal, timestamped, shareable
Both can reference external content (videos, PDFs).
AI Features
AI operates within boundaries:
- Context-Aware Chat - Knows where you are in content
- Recall Check - Tests memory, not recognition
- Analysis - Identifies gaps, suggests review
AI never operates during high-stakes assessments.
Community
Peer support without social noise:
- Forum - Doubt resolution, organized by context
- Community Bot - Guidance, not replacement
- Notes Sharing - Optional, permission-based
Safety & Integrity
Non-negotiable principles:
- AI disabled during exams
- Copy/paste blocked during tests
- Transparent about what’s being monitored
- No punishments in MVP (trust-first)
Progress Tracking
Multiple views:
- Student View - Personal progress, trends
- Teacher View - Class progress (later phases)
- AI Insights - Pattern recognition, suggestions
Data Flow
Learning Flow
Context Setup → Browse Syllabus → Watch Video → Take Notes → Practice Quiz → AI Insight Assessment Flow
Take Quiz/Test → Immediate Feedback → Post-Test Analysis → AI Recommendations → Targeted Review Revision Flow
AI Recall Check → Identify Gaps → Guided Review → Re-test Weak Areas → Updated Progress Community Flow
Post Doubt → Community Bot Response → Peer Answers → Resolution → Knowledge Shared Why This Architecture
Student Outcomes First
Every component exists to improve learning outcomes:
- Context ensures relevant content
- Structure provides clear paths
- Assessment validates understanding
- Notes capture and link knowledge
- AI guides without replacing
- Community offers peer support
- Safety ensures integrity
- Progress motivates through visibility
Modularity
Each component can evolve independently:
- New assessment types without restructuring
- Enhanced AI without changing structure
- Expanded community features
- Improved progress visualizations
Scalability
Architecture supports growth:
- New exams can be added (context layer)
- New content types (learning structure)
- New assessment formats (assessment system)
- New AI features (within boundaries)
Key Principles
- Context is foundational - Everything starts here
- Retention over completion - Not watched, but learned
- Active recall over passive review - Produce, don’t recognize
- AI assists, never replaces - Human learning is the goal
- Community supports, doesn’t distract - Focused peer help
- Safety is non-negotiable - Integrity always
Next Steps
- Context Layer - Understand exam persistence
- Learning Structure - See content organization
- Notes System - Learn about notes architecture
- AI Recall Check - See memory-aware revision